Insights from Pathology Studies DCBs and DESs

Aloke Finn, MD CVPath Institute Inc. Gaithersburg, MD. USA

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Institutional Grant/Research/Clinical Trial Support

R01 HL141425 Leducq Foundation Grant; 480 Biomedical; 4C Medical; 4Tech; Abbott; Accumedical; Amgen; Biosensors; Boston Scientific; Cardiac Implants; Celonova; Claret Medical; Concept Medical; Cook; CSI; DuNing, Inc; Edwards LifeSciences; Emboline; Endotronix; Envision Scientific; Lutonix/Bard; Gateway; Lifetech; Limflo; MedAlliance; Medtronic; Mercator; Merill; Microport Medical; Microvention; Mitraalign; Mitra assist; NAMSA; Nanova; Neovasc; NIPRO; Novogate; Occulotech; OrbusNeich Medical; Phenox; Profusa; Protembis; Qool; Recor; Senseonics; Shockwave; Sinomed; Spectranetics; Surmodics; Symic; Vesper; W.L. Gore; Xeltis.

Speaker's Bureau Abbott Vascular; Biosensors; Boston Scientific; Celonova; Cook Medical; CSI; Lutonix Bard; Sinomed; Terumo Corporation.

Consultant/Advisory Boards Amgen; Abbott Vascular; Boston Scientific; Celonova; Cook Medical; Lutonix Bard; Sinomed.

Evolution of DES Technology

2nd Gen DES could not improve the clinical outcome

DES

2nd gen: EES 6141 (82.3%), R-ZES 832 (11.1%)

1st gen: E-ZES 56 (0.8%), SES 211 (2.8%), PES 175 (2.3%)

Bønaa KH et al. N Engl J Med 2016;375:1242-1252.

Problems Encountered with Drug-Eluting Stents

Thick strut DES with durable polymer

- Thick struts
- Uneven polymer distribution with poor integrity, and thick coating of durable polymers
- High drug dose
 - **Uncovered struts**
 - **Hypersensitivity**
 - **Malapposition from** fibrin deposition
 - Stent fracture
 - **Neoatherosclerosis**

Late Stent Thrombosis / Restenosis

Thinner struts

Thin strut DES with durable polymer

- More biocompatible polymer (Durable)
- **Reduced drug dose**
 - **Uncovered struts**
 - **Hypersensitivity**
 - Malapposition from fibrin deposition
 - Stent fracture
 - Neoatherosclerosis

Clinical Late Catch-up

Late catch-up

Uncovered struts

Hypersensitivity reaction

Malapposition from excessive fibrin deposition

Neoatherosclerosis

Are long-term (1-5 years) results different in 1st, vs. 2nd, vs. BMS different in pathologic studies?

Inflammation in long-term after stent implantation

CoCr-EES

SS-SES

CoCr-BMS

DOI: 10.1161/ЈАНА.117.007244 201 Mori et al.J Am Heart Assoc.

Neoatherosclerosis in Long-TermCoCr-EES 5 yearsSS-SES 5 years

BMS 5 years

Prevalence and type of neoatherosclerosis

Mori et al.J Am Heart Assoc. 2017;6:e007244. DOI: 10.1161/JAHA.117.007244

How Do DES Perform in severe calcified lesions?

Impact of Calcification on strut coverage after current generation DES

Torii et al. Unpublished data

Impact of surface calcification and medial tear

on uncovered struts

Severe medial tear

Surface calcified area

Torii et al. Unpublished data

Surface calcification is a predictor for uncovered struts

Multivariate Analysis of Predictors for Delayed Strut Coverage in Newer-Generation DES

	OR	Lower 95% Cl	Upper 95% Cl	p value
Duration of implantation <6 months	7.7	5.18	11.50	<.0001
2 consecutive struts on surface calcified area	6.5	3.55	12.04	<.0001
Strut malapposition	5.0	3.34	7.57	<.0001
Lack of severe medial tear	2.5	1.53	4.34	0.0005

Torii et al. Unpublished data

Limitation of DES

- > Vessel caging
 - > lack of adaptive remodeling
- > Permanent metallic implant
 - > Foreign body reaction
- > Unsuitable lesions;
 - > Long segment disease, small vessels, calcification
- > Future treatment
 - > Preclusion of bypass to stented segments

DRUG COATED BALLOON OVERCOMES UNMET CLINICAL NEED

6		
Sener To	reatment sam Area	

- Novel angioplasty balloon coated with an anti-restenotic drug
- Overcoming unmet clinical need:
 - Homogenous delivery of anti-restenotic drug reduces amount of restenosis
 - Due to absence of any stent no stent fracture, vessel injury
 - Allows original anatomy to remain intact positive remodeling
 - "Leaving nothing behind" allowing fast 'normalization' of vascular function
 - > True normalization of vasomotor function,
 - Restoration of physiological responses to stress
 - » NO long-term consequences related to inflammation, accelerated atherosclerosis and thrombosis
 - No need for long term DAPT

DIFFERENCES: DES VS. DCB

Parameters	DES	DCB			
Drug concentration on the device	Low 5-10 µg/mm	Very High 2-3 μg/mm² (≒20-30 μg/mm)			
Drug transfer at the time of deployment	Slow	Rapid, all at once			
Reservoir of drug	Polymer or no polymer	No (excipient is needed)			
Drug retention in tissues	Available for a long time	Need the drug in crystalline form (Ptx) and should be easily transferable to adjacent cells. Must binds to cell membranes			
Diffusion	Good	Excellent			
Distribution	Uniform circumferential	Uneven and usually 1 or 2 quadrants			
Distal emboli	None	Depends on coating integrity			
BMS DES	DCB	DES Hwang, Circulation 2001; 104: 600- DCB Paccocath			
28 days	14 days (Porcine iliac artery	Paccocain			

Elements of an Effective DCB Formulation

- Must deliver large quantities of the drug within seconds
- Distribute within the media in the first few days
- Therapeutic drug levels must be maintained for more than 4 weeks
- Must allow rapid healing as compared to DES
- No need for long-term anti-platelet therapy
- Biologic effects must be observed by histology at 28-days
- Effective drug delivery to target tissue while avoiding non-target effect (i.e. minimize emboli)

Pre-clinical Comparative Study

- Swine SFA were randomly treated by LUTONIX, IN.PACT or POBA, 1x and 3x dose.
- Evaluated downstream organs at 28 and 90 days
 - Distal drug concentration
 - Histology ; Distal embolization, Vascular changes

Downstream Findings in Porcine Skeletal Muscle (28-Day)

Lutonix (1x) Vascular Change

IN.PACT (1x) Crystalline Material

IN.PACT (3x) Crystalline Material

High (20x and 40x) power images of vascular changes in skeletal muscle at 28 days.

Vascular changes include pyknotic nuclei embedded in homogenous pink material (yellow arrow), representing fibrinoid necrosis (black arrows), with surrounding inflammatory cells (blue arrows).

> High (40x) power images of crystalline material (red arrows) at 28d

IN.PACT (1x) Vascular Change

Downstream Incidence of Distal Embolization (%)

Current DCB Controversy

SYSTEMATIC REVIEW AND META-ANALYSIS

Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropopliteal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Konstantinos Katsanos, MD, PhD, MSc, EBIR; Stavros Spiliopoulos, MD, PhD; Panagiotis Kitrou, MD, PhD; Miltiadis Krokidis, MD, PhD; Dimitrios Karnabatidis, MD, PhD

- A systematic review and meta-analysis published in Dec 2018.
 Paclitaxel DCB/DES vs POBA/BMS for femoropopliteal artery disease
 - All cause patient death rate at
 - 1 year, 28 RCTs, n= 4432; 2.3% vs 2.3% (RR 1.08; 95% Cl. 0.72-1.61)
 - 2 year, 12 RCTs, n=2316; 7.2% vs 3.8% (RR 1.68; 95% Cl. 1.15-2.47)
 - 5 year, 3 RCTs, n=863; 14.7% vs 8.1% (RR 1.93; 95% Cl. 1.27-2.93)

Paclitaxel devices showed

higher risk of mortality at 2 years and 5 years

Current DCB Controversy

U.S. FDA issued "Letter to healthcare **Providers**"

ISSUE: January 17, 2019 UP DATE: March 15, 2019

A to Z Index Follow FDA En Español U.S. FOOD & DRUG FDA Search FDA ADMINISTRATION Ξ Food Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Drugs Medical Devices Medical Devices Home > Medical Devices > Medical Device Safety > Letters to Health Care Providers Treatment of Peripheral Arterial Disease with Letters to Health Care Providers Paclitaxel-Coated Balloons and Paclitaxel-Eluting Stents Potentially Associated with Increased Mortality - Letter to Health Care Providers

Recommendations

1. Monitoring of patients who have been treated with paclitaxel devices

U.S. Department of Health and Human Services

- 2. For most patients, alternative treatment options to paclitaxel devices should generally be used until additional analysis of the safety signal has been performed
- 3. For some individual patients (i.e., high risk for restenosis), clinicians may determine that the benefits of using a paclitaxel devices may outweigh the risks.
- 4. Ensure patients receive optimal medical therapy for PAD and other cardiovascular risk factors

U.S. Food & Drug Administration (2019), "Treatment of Peripheral Arterial Disease with Paclitaxel-Coated Balloons and Paclitaxel-Eluting Stents potentially Associated with Increased Mortality – Letter to Health Care Providers ",

Q

Tobacco Products

Summary

- First generation DESs had problems with delayed arterial healing characterized by uncovered struts and higher inflammation, and hypersensitivity reaction.
- Second generation DESs have markedly improved, with significantly less thrombosis, inflammation, and uncovered struts.
- Even long-term results (>1 year) with permanent polymers are better than BMS and SES in terms of inflammation and target lesion failure.
- In long term study by histology (1 to 5 years), 2nd generation DES (EES) showed similar neoatherosclerosis with less advanced plaques observed in EES than SES.
- DCB might overcome clinical unmet of DES, however, further discussion are needed on the safety of paclitaxel devices.

Acknowledgments

<u>Funding</u>

CVPath Institute Inc.

CVPath Institute

Yu Sato, MD. Hiroyuki Jinnouchi, MD Atsushi Sakamoto, MD Anne Cornelissen, MD Liang Guo, PhD Robert Kutyz, MS **Russ Jones** Ed Acampado, DVM Abebe Atiso, HT Jinky Beyer Lila Adams, HT Frank D Kolodgie, PhD Renu Virmani, MD

Reactions

LINC; January 22-25, 2019, Germany. Makers with FDA approved paclitaxel devices reported a comparison of mortality between DCB/DES and POBA/BMS

- Medtronic <u>Pacli</u>
 - Paclitaxel DCB/DES vs POBA/BMS, p value
 - IN.PACT Admiral [™]; 9.3% vs 11.2%, p=0.399 (5 years, n=1980)
- BARD
 - Lutonix[®]; 14.2% vs 10.6%, p=0.198 (5 years, n=1189)
- PHILIPS
 - Stellarex[™]; 7.9% vs 9.9%, p=0.78 (3 years, n=2521)
- Cook Medical
 - Zilver[®] PTX[®]; 18.7% vs 17.6%, p=0.53 (5 years, n=479)
- Boston Scientific
 - Eluvia[™]; 2.10% vs 4.0%, p=0.23 (1 year, n=465) * Lancet. 2018 Oct 27;392(10157):1541-1551.

There was no difference in mortality

between paclitaxel devices and non-paclitaxel devices.

Polymer Delamination in Long-Term

CoCr-EES 4 years

CoCr-EES 5 years

Prevalence of Polymer Delamination (%)

Pathological studies in 1st vs. 2nd Generation DES

First-generation DES with localized Hypersensitivity and Malapposition

Patient #	Age (yrs)/ Sex	Lesion	Stent Type	Total Stented Segment (mm)	Duration of Implants (Months)	Indication for Implants	Clinical Presentation	Malapposition	Malapposed Distance (µm)
SES with localized hypersensitivity reaction									
1	61/M	RCA	SES	18	4	SAP	Sudden death	No	_
2*	40/F	LAD	SES	27	17	AMI	Sudden death	Yes	650
		RCA	SES	25	17	AMI		Yes	320
3	49/M	LCX	SES imes 2	27	18	UAP	AMI	Yes	1,620
4	46/M	LAD	SES	23	31	SAP	AMI	Yes	930
		RCA	$\rm SES \times 2$	30	31	AMI		Yes	1,200
5	62/F	LAD	$\rm SES \times 3$	41	36	SAP	Repeat occlusion	NA†	_

LAD: SES (17months)

RCA: SES (17months)

Pathology of 2nd-gen CoCr-EES vs. 1st-gen SES/PES

Duration of implant: >30 days, \leq 3 years

Inflammation in the 2nd-generation DES

61M, E-ZES (3 months)

51M, CoCr-EES 4 months

Chronic inflammation consisting with giant cells secondary to polymer delamination in ZES

Morphometric Analysis: CoCr-EES vs. SES/PES

All statistical analyses were corrected for duration of implant. Modified from Otsuka F, et al. Circulation. 2014;129:211-223.

CoCr-EES

PES

0

SES

CoCr-EES

PES

0

SES

0

SES

PES

CoCr-EES

Neointimal Thickness and Prevalence of Uncovered Struts Stratified by Duration of Implant in CoCr-EES vs. SES/PES

Maximum Neointimal Thickness (mm)

Prevalence of >30% Uncovered Struts

Otsuka F, et al. Circulation. 2014;129:211-223.

Neoatherosclerosis in CoCr-EES

CoCr-EES 24M

CoCr-EES 36M

Overall prevalence of NeoAth

Prevalence of Various Features of Neoatherosclerosis

All statistical analyses were corrected for duration of implant.

Otsuka F, et al. Circulation. 2014;129:211-223.

Prevalence of Neoatherosclerosis, Stent Thrombosis with Neoatherosclerosis, and Restenosis with Neoatherosclerosis Stratified by Duration of Implant in BMS, 1st- and 2nd-gen DES

A total of 614 stented coronary lesions (BMS=266, 1st-generation DES=285 [143 SES and 142 PES], and 2nd-generation DES=63 [7 E-ZES, 3 R-ZES, and 53 EES]) from 384 autopsy cases were pathologically examined (mean duration of implant = 913±989 days).